Variability in the Position and Strength of Winter Jet Stream Cores Related to Northern Hemisphere Teleconnections
نویسندگان
چکیده
Numerous teleconnections have been identified based upon spatial variability in sea level pressure or lower-tropospheric geopotential height fields. These teleconnections, which are commonly strongest in winter when the mean meridional temperature gradient is large, typically are neither derived from nor linked to changes in the jet stream. Here, winter tropospheric jet stream cores over the Northern Hemisphere (NH) are recovered from 6-hourly gridded data and interannual variability in winter jet core position, speed, and pressure are investigated in the context of NH teleconnections. Common methods for researching jet stream speed and position variability may yield unrepresentative results because jet core pressure variability is ignored (only one isobaric surface is evaluated) or pressure variability effects are smoothed (values are vertically averaged across several isobaric surfaces). In this analysis, data are extracted at the surface of maximum wind, thus controlling for jet core pressure variability and allowing for a more representative tracking of three-dimensional jet core variations. In the extratropics, the leading pattern of variability in jet core frequency is correlated with the Arctic Oscillation index (AOI) and appears as an oscillation about the spiral-shaped mean configuration of the winter jet stream. In contrast to previous research, the authors find no evidence of Pacific jet deceleration during positive AOI. The second leading mode of variability appears as a split (merged) winter-mean jet stream in the east Pacific together with a merged (split) winter-mean jet stream over North America, a pattern of change that correlates with the Pacific–North American pattern and is reflected in the amplitude of the long-wave ridge over western North America.
منابع مشابه
Variability in the altitude of fast upper tropospheric winds over the Northern Hemisphere during winter
[1] The surface of maximum wind (SMW) is used as a frame for examining spatial and temporal variability in the vertical position of fast upper tropospheric winds over the Northern Hemisphere during winter. At a given observation time in a gridded data set, the SMW is defined as the surface passing through the fastest analyzed wind above each grid node, with a vertical search domain restricted t...
متن کاملDecadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review
The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched sin...
متن کاملThe Influence of Regional Storm Tracking and Teleconnections on Winter Precipitation in the Northeastern United States
Secular changes in regional storm tracking are examined as physical mechanisms for observed teleconnections between the New England hydroclimate and four predictor variables: the Southern Oscillation Index, the North Atlantic Oscillation, the Pacific Decadal Oscillation, and regional sea-surface temperatures. The main modes of New England winter precipitation, snowfall, and cyclone variability ...
متن کاملResponse of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models
This work documents how the midlatitude, eddy-driven jets respond to climate change using model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors consider separately the North Atlantic, the North Pacific, and the Southern Hemisphere jets. The analysis is not limited to annualmean changes in the latitude and speed of the jets, but also explores how the variabi...
متن کاملExamining mechanisms of variability within the Pacific storm 1 track : upstream seeding and jet core strength
5 This paper examines how variations in two mechanisms, upstream seeding and jet core 6 strength, relate to storminess within the cold season (Oct Apr) Pacific storm track. It is 7 found that about 17% of observed storminess co-varies with the strength of the upstream 8 source, and the relationship is robust throughout the cold season and for both the Pacific 9 and Atlantic basins. Further anal...
متن کامل